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We present a minimal model for spatiotemporal oscillation and rheochaos in shear thickening complex fluids
at zero Reynolds number. In the model, a tendency towards inhomogeneous flows in the form of shear bands
combines with a slow structural dynamics, modeled by delayed stress relaxation. Using Fourier-space numer-
ics, we study the nonequilibrium “phase diagram” of the fluid as a function of a steady mean �spatially
averaged� stress, and of the relaxation time for structural relaxation. We find several distinct regions of periodic
behavior �oscillating bands, traveling bands, and more complex oscillations� and also regions of spatiotemporal
rheochaos. A low-dimensional truncation of the model retains the important physical features of the full model
�including rheochaos� despite the suppression of sharply defined interfaces between shear bands. Our model
maps onto the FitzHugh-Nagumo model for neural network dynamics, with an unusual form of long-range
coupling.
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I. INTRODUCTION

Complex fluids have long been known to show strong
coupling between structure and flow. This leads to viscoelas-
ticity in both the linear and the nonlinear response. The latter
can include both shear thinning and shear thickening, with
upward and downward curvature, respectively, in the steady
state flow curve ���̇� of shear stress against strain rate. Poly-
mers are usually shear thinning, whereas viscoelastic micel-
lar systems can be either thinning or thickening, as can dense
colloidal suspensions �1,2�. In extreme cases of shear thin-
ning, where ���̇� becomes nonmonotonic, steady flow is me-
chanically unstable on the decreasing portion of the curve.
Stability can sometimes be restored by shear-banding, in
which bands of material with unequal strain rate �̇ but equal
stress � coexist, with interface normals in the shear gradient
direction �3,4�. For extreme shear thickening, the same ap-
plies interchanging � and �̇, with band interface normals
now in the vorticity direction �5,6�.

It has recently become clear, however, that in some com-
plex fluids �as outlined below� parameter regimes exist
where the constitutive response to steady driving is intrinsi-
cally unsteady. This entails a different �or at least stronger�
dynamical instability to the one present in shear-banding.
These instabilities are not transient phenomena: They rather
indicate the presence of complicated dynamical states within
the flow diagrams of complex fluids. In principle there can
be many sources of dynamical instability: Under appropriate
conditions, complex fluids—like simple fluids—are subject
to classical inertial �Taylor-Couette, turbulence� or thermo-
convective �Rayleigh-Bénard� instabilities �7,8�. More spe-
cific to complex fluids are stick-slip phenomena �like the
“spurt” or ‘melt fracture’ effect �1�� and various elastic insta-
bilities �so-called “elastic turbulence” �9��.

Here we address a distinct class of instabilities in which
not only the mechanical response, but also the internal struc-
tural parameters of the fluid, vary in time. Experimentally,
such structural instabilities arise in a variety of systems.
Typical observations fall into two broad types.

The first type of unstable temporal behavior comprises
sustained, periodic oscillations of the shear rate at constant
imposed shear stress, or vice versa: This has been observed
for surfactant solutions either in worm-like micellar phases
�10–14� or lamellar phases �15–18�, as well as in polymer
solutions �19� and concentrated colloids �20�. The second
type of unsteady behavior is more complex, with erratic tem-
poral responses of either the shear rate or shear stress. Such
irregular signals have been observed in worm-like micelles
�21–24�, lamellar �onion� phases �16,17,25� and concentrated
colloids �26�. In many of these systems, such erratic re-
sponses occur for parameter values enclosed within those
where oscillations arise.

There are strong indications �16,21,22� that these erratic
responses result from a deterministic chaotic dynamics. A
remarkable aspect of chaos in these flows is that the Rey-
nolds number is virtually zero: The inertial term v. �v in the
Navier-Stokes equation is negligible. The instabilities thus
stem from constitutive nonlinearity in the rheology of the
fluid, unlike the convective instability that gives rise to tur-
bulence in Newtonian flows. The term “rheological chaos,”
or simply “rheochaos” has been coined for such behavior
�27�.

The involvement of the fluid microstructure in these in-
stabilities was established by monitoring structural observ-
ables and showing that these evolve in concert with the time-
dependent rheological signal. The methods used include
birefringence imaging �11,19�, light scattering �15,16� and
spatially resolved nuclear magnetic resonance �NMR� �24�.
Many �but not quite all� instances of structural instability
occur in shear-stress or shear-rate ranges close to nonequi-
librium transitions between distinct phases or textures in the
fluid, for example, the transition from isotropic to flow-
aligned-nematic structures in worm-like micelles �24�, or the
disordered-to-layered packing transition in multilamellar on-
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ions �15–17,25�. �There may also be underlying transitions
from a flowing to a jammed state in colloids �26�, and from
isotropic to string-like structures in polymer solutions �19�.�
Structural instabilities arguably arise when the fluid under
flow hesitates between possible alternative structures near
such transitions.

A crucial question is whether structural instabilities are
purely temporal or spatiotemporal in character. Do all points
in the fluid follow the same time evolution, or do different
parts of the fluid have different mechanical and structural
states at the same instant of time? Early experiments on
worm-like micelles �11,12� and polymers �19� pointed to-
wards heterogeneity: Optical observations showed alternat-
ing turbid and clear bands. More recent advances allow spa-
tially and temporally resolved measurements of velocity
profiles within a rheometer. Such experiments, on multila-
mellar onions �17,25� and worm-like micelles �24�, unam-
biguously demonstrate both the presence and the nature of
the heterogeneities: They are fluctuating shear bands. Theo-
retical models that address only temporal instability in a spa-
tially uniform system, such as that of Ref. �27� are, therefore,
of limited relevance to the experimental situation.

In this paper we extend the model of Ref. �27� to allow
for spatial heterogeneity, exploring the resulting scenario of
why shear bands destabilise in such fluids and how this pro-
duces oscillatory and chaotic flows. �Note that we work in a
parameter regime where the flow curve is monotonic, so that
shear bands cannot exist as a time-independent steady state.�

We thereby create a minimal model of spatiotemporal in-
stabilities in shear-thickening fluids. The model includes an
intrinsic short-time tendency to form shear-bands coupled to
a slow relaxational component dynamics for the fluid micro-
structure �modeled as a retarded stress response term�. In the
purely temporal model of Ref. �27�, oscillations but not
chaos were found �unless a physically unconvincing “double
memory” term was used�. By allowing for full spatiotempo-
ral dynamics, we show that the interplay between the above
two factors gives rise to several distinct periodic regimes
�including oscillating shear bands and traveling bands� and
also regimes of spatiotemporal rheochaos. Preliminary ac-
counts of our work were given in Refs. �28,29�.

Our motivation for studying the case of a fluid that shows
shear-thickening �in itself a widely observed but poorly un-
derstood phenomenon �30,31�� is that several of the above-
cited experiments concern such fluids �Refs. �10–13,22� for
wormlike micelles; �19� for polymer solutions; and �20,26�
for colloidal suspensions�.

The alternative case of shear-thinning fluids has been re-
cently addressed by Fielding and Olmsted �32�, and in less
detail also by ourselves �29�. The authors of Ref. �32� have
demonstrated the presence of a rich dynamics, including
rheochaos, in their model. Also closely related is the work by
Chakrabarti et al. �33� on nematic liquid crystals which also
shows regimes of spatiotemporal chaos. In what follows, we
shall note similarities and differences between our own work
and these other studies.

The rest of this paper is organized as follows. In Sec. II,
we define the model, discuss its physical assumptions, and
relate it to other models �both in rheochaos and in other
fields of study�. In Sec. III, we give a qualitative description

of how the model works. Section IV explains how the model
is solved numerically. In Sec. V, we present our results in the
form of a nonequilibrium “phase diagram” and comment on
the various flow regimes encountered. Section VI studies a
low-dimensional version of the model which offers further
insights into the nature of rheochaos. In Sec. VII we summa-
rize our findings and their generic implications for the phys-
ics of rheological instabilities in complex fluids.

II. THE MODEL

Our model has two main physical ingredients, as follows:
�i� The fluid has a tendency to form shear bands;
�ii� there are slow structural modes in the fluid whose

delayed relaxation modifies the evolution of the stress.
The latter ingredient is central to our description. When

some structural mode is disturbed by the flow, it will relax on
a timescale that is distinct from the stress relaxation time in
the system. Below, for simplicity, we will consider a single
timescale �S for structural relaxation, with stress relaxation
assimilated into the usual Maxwell time �M. We focus on the
case where structural modes relax at least as slowly as the
stress itself would do at fixed structure ��S��M�.

Because of the disordered energy landscape and metasta-
bility intrinsic to many complex fluids �34–36�, such slow
dynamics is commonplace. Candidates for slow structural
modes include the mean length or the local gel fraction in
worm-like micelles; local composition variables �e.g., colloi-
dal volume fraction�; and “fluidity” parameters reflecting,
e.g., a local bonding state �29,37�. An involvement of slowly
evolving structure has been shown in many experimental
cases �10–19�.

A. Model equations

We consider the situation of a fluid under pure shear, and
we assume, as usual �2�, that the shear stress � decouples
from other stress components, and depends only on the rate
of shear strain �̇. We will restrict our study to one-
dimensional spatial heterogeneity in the fluid, in the vorticity
direction �perpendicular both to the velocity and the velocity
gradient�; in cylindrical Couette geometry, which we will
always refer to in the following, this corresponds to the axial
coordinate denoted z. �For three-dimensional �3D�-related ef-
fects in situations of shear-banding, see �38�.�

This choice for the heterogeneity direction is motivated
by the classical geometry of steady shear bands in thickening
materials �5,6� where, as shown in Fig. 1, bands are stacked
one onto another in the vorticity direction �vorticity shear
bands�. Note that, under these assumptions, the shear flow is
homogeneous within each slice of height z, as required by
the low-Reynolds limit. �We neglect any small variation in
the velocity gradient direction caused by the curvature of the
cell. Without fluid inertia, the stress cannot vary in this di-
rection.�

In all of the following, we shall work under conditions of
imposed torque, i.e., under an imposed value of the mean
�spatial average� of the stress ���: This is the usual situation
for vorticity shear bands, shown in Fig. 1. �We also studied
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the behavior of our model under conditions of imposed shear
rate �results not shown� but no spatiotemporal effect was
observed, see note �39�.�

In our model, the shear stress ��z , t� at time t evolves
according to the following equation of motion:

�̇�z,t� = �̇�t� − R��� − ��
−�

t

M�t − t����z,t��dt� + ��2�

�1�

where

R��� = a� − b�2 + c�3 and M�u� =
1

�S
e−u/�S �2�

Equations �1� and �2� are nondimensional: The transient elas-
tic modulus is taken as the unit for stress, and H, the axial
extent of the Couette cell �vertical in Fig. 1�, the unit of
length. Several choices are possible for the time unit; the
simplest one is the fluid’s Maxwell time �M. However, as we
will always be dealing with times longer than �M, we choose
instead 100�M as a time unit. �This amounts to setting �M
=0.01 and, via Eq. �3�, a=100 throughout what follows; we
do this.� The reader is referred to Appendix A for details on
the nondimensionalization procedure.

Note that �̇=�� /�t in Eq. �1� is a local time derivative.
We also emphasize that the shear rate �̇ in Eq. �1� is uniform:
The moving wall of the rotor imposes the same velocity for
all heights z, and �̇�z , t�= �̇�t� only.

The terms in Eqs. �1� and �2� have the following signifi-
cance. R��� describes instantaneous, nonlinear stress relax-
ation. As defined by Eq. �2�, R is a third-order polynomial,
with the positive constants a, b, and c chosen so that R���
�0 for ��0, and so that the inverse function, ��R�, is an
S-shape �see Fig. 2�. We choose a=100, b=20, c=1.02 in
this paper; setting c=1 would give a physically inappropriate
zero of R��� at �=10. The R��� term encodes ingredient �i�
of the model, i.e., the tendency of the fluid to form vorticity
shear-bands. This tendency is instantaneous, but frustrated by

structural relaxation effects—see Fig. 3. Note that, with our
choice of units, a controls linear stress relaxation in the fluid,
and hence determines the Maxwell time �M:

�M = 1/a �3�

Setting b=c=�=�=0 in Eq. �1� indeed recovers the classical
Maxwell model for linear viscoelasticity.

The integral term in Eq. �1� corresponds to our second
physical ingredient, and represents retarded stress relaxation
due to slow structural reorganisation in the fluid; � is a posi-
tive constant governing the strength of this term. For the sake
of simplicity, retarded relaxation is chosen linear in past
stresses; but note that, as discussed in Ref. �27�, a similar
form can be obtained by introducing an explicitly structure-
dependent R��� and then linearizing this structure-
dependence. The memory kernel M is in principle any de-
caying function �27�. However, in Eq. �2�, we choose it
mono-exponential with characteristic time �S. This choice
permits a much simpler, fully differential representation that
we exploit in our numerics below. As stated previously, we
take structural relaxations to be slow compared to the intrin-
sic time scale of stress relaxation; we study mainly 4
	�S /�M	104. �This contrasts somewhat with the model of
Ref. �32� where �S /�M�1.�

FIG. 1. Vorticity shear bands in a Couette cell �5,6�. These occur
in shear thickening materials with an S-shaped flow curve �� vs �̇�.
A given mechanical torque on the Couette imposes a mean �spa-
tially averaged� stress ���. Any ��� within the unstable portion of
the flow curve is unstable toward shear bands �with different local
microstructures� along the vorticity direction z, depicted here as a
clear and a turbid band. These coexist at a common shear rate �̇c

�whose value is fixed by gradient terms �4�� but at different stresses
�1 and �2. The amount of each band is such that the weighted mean
of �1 and �2 matches the externally imposed mean ���.

FIG. 2. Plots of R��� and the inverse function ��R�. The
S-shape of the latter encodes the tendency of the fluid to form
vorticity shear bands.

FIG. 3. Steady-state flow curve �thick line�, and underlying
short-term flow curves �thin lines, with, from left to right, m
=0,1 ,2 , . . . ,20�. The stress range between the dotted lines corre-
sponds to the unstable region, here deduced for �S=100 from Eq.
�9�. Numerical parameters: �=40, a=1/�M=100, b=20, c=1.02,
�=0.01, H=1.
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Finally, the last term of Eq. �1� assigns to stress a diffu-
sivity �. By analogy with the classical Cahn-Hilliard model
for phase separation �40�, this can be viewed as representing
the cost of maintaining interfaces in inhomogeneous states.
Such minimal nonlocality in the constitutive model is known
to be physically crucial. For example, in steady-state shear
bands it drives a selection mechanism, among all possibili-
ties on a given flow curve like that of Fig. 1, for the coex-
istence strain rate �̇c �4�.

A superficial comparison of Eq. �1� with Ref. �27� might
suggest that our work is new only in the addition of this
diffusive term. But of course we simultaneously upgrade the
dimensionality of the problem from ��t� in that work to
��z , t� here; this allows vastly richer behavior, in better cor-
respondence with the experimental facts, to emerge.

We now recast Eqs. �1� and �2� into a purely differential
form �27�. We define a new variable

m�z,t� = �
−�

t

M�t − t����z,t��dt� �4�

which we call the “memory,” and which contains the struc-
tural part of the stress relaxation. We can then rewrite Eq. �1�
as an exactly equivalent differential system

�̇ = �̇ − R��� − �m + ��2� �5�

ṁ = −
m − �

�S.
�6�

Equation �6� states that the memory is always relaxing to-
wards the current and local value of the stress ��z , t� with a
�slow� rate �S

−1.
In its differential form, the model can be interpreted as

follows. Equation �5� is a nonlinear rheological equation
controlling the temporal evolution of the stress, where one of
the participating variables is structural by nature �the
memory m�; this structural variable is subject to a distinct
dynamics, governed by a “structural equation,” Eq. �6�, with
a different relaxation time �S. The coupling of the two dy-
namics, mechanical and structural, is the source of the insta-
bility.

B. Relation to other models

Viewed in this way, our model belongs to a larger class of
models that have been recently proposed to describe the dy-
namics of complex fluids.

The models of Refs. �32,29� for shear-thinning solutions
of worm-like micelles work on a similar scheme: there, the
“structural variable” is the mean chain length of the micelles
�32�, or simply the Maxwell time of the fluid itself �29�. In
both cases, its evolution is governed by a differential “struc-
tural equation” akin to Eq. �6�. Belonging to the same family,
albeit coming from a somewhat different perspective, Derec
et al. proposed a model for the fluidization transition in
pastes �37�, where a classical rheological equation is supple-
mented by a structural equation describing a “fluidity” pa-
rameter.

From a more formal point of view, all these models are
related to the prey-predator and reaction-diffusion models

commonly found in nonlinear physics and mathematical bi-
ology �41�. �In our case, � and m are the two competing
species.� This type of nonlinear models are known to yield
complex spatiotemporal behavior �41�, thus it should not
come as a surprise that the related models used in the field of
complex fluids do also.

It is interesting to note that our Eqs. �5� and �6� in fact
map exactly onto a well-known model of nonlinear physics,
the FitzHugh-Nagumo model �41–45�. The simplest version
of the latter model was developed to describe electrical ac-
tivity in a single neuron, where the axon membrane potential
is a fast variable �also called “excitation variable,” analogous
to � in our model�, and is coupled to the dynamics of a slow
variable �or “recovery variable,” analogous to m�, related to
the activity of sodium ion channels. This system is known to
produce van-der-Pol-like �purely temporal� oscillations, like
those described for complex fluids in the earlier, spatially
homogenized, version of our model �27�.

In recent years, spatially inhomogeneous extensions of the
FitzHugh-Nagumo have been used to study the collective
properties of interacting networks of neurons, and other re-
lated assemblies of coupled nonlinear oscillators, focussing
on the competing effect of local and global couplings
�46–49�. The model of Eqs. �5� and �6� is of just this type:
The local coupling is supplied by the diffusion term ��2�,
and the global coupling by the constraint that the spatial
mean stress ��� is externally fixed.

We remark, however, that: �a� In our model, the mean
value of the stress is fixed, while in neural networks where a
coupling to the mean membrane potential is implemented
�46,48,49�, its value fluctuates in response to the collective
dynamics in the model; �b� possibly for this reason, several
of the spatiotemporal patterns reported below �in particular
oscillatory shear bands� have not to our knowledge been re-
ported in the literature on FitzHugh-Nagumo networks; �c�
an active research topic in neural networks is the effect of
noise on global behavior, including the possibility to trigger
chaotic dynamics �49�. Such a role for noise �either thermal,
or mechanical� is neglected in most models of rheochaos but
would constitute an interesting avenue for future research.

III. QUALITATIVE FEATURES

We now explain some qualitative features of our model,
focusing on the origin of the dynamical instability, and on a
physically important scaling property. We also briefly discuss
how the values of our model parameters may be estimated
from experiment.

A. Flow curves

We start by computing the flow curves for the fluid, i.e.,
the relation between � and �̇ in steady-state flow.

From Eqs. �5� and �6�, the flow curve for steady-state,
homogeneous flows is given by setting �̇= ṁ=�2�=0. Equa-
tion �6� then yields m=�: At each point on the curve, the
memory has relaxed to the steady-state stress. This can be
substituted in Eq. �5�, to provide the equation for the steady-
state flow curve �27�:
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�̇ = R��� + �� . �7�

When R����+�
0 for all values of � �a condition which we
shall always take to hold below� the flow curve is monotoni-
cally increasing, as in the thick curve in Fig. 3. In contrast
with rheological constitutive models that do not show struc-
tural coupling, this monotonicity does not ensure mechanical
stability of homogeneous flows �27�.

The qualitative reason for instability of the monotonic
flow curve is that the steady states associated to this curve
only arise when the memory m has relaxed, i.e., for time
scales beyond �S. For times much shorter than �S, the fluid
instead behaves as if the memory m was frozen. Thus, at
short time scales, the fluid lives on one of a set of “instanta-
neous flow curves” for which stress has relaxed, but not
structure. These instantaneous curves have �̇=0 at fixed m,
giving

�̇ = R��� + �m �short term� , �8�

where m is a parameter. Such curves for m=0, . . . ,20 are
plotted in Fig. 3, and are not monotonic. As the memory
slowly relaxes, the fluid drifts from one such curve to an-
other; Eq. �7� can be reconstructed by picking, for each value
of the stress �, the corresponding point on the particular
instantaneous curve that has m=�. But for our choice of
nonmonotonic R, the fluid has an instantaneous tendency to
form shear-banded flow. This impedes the establishment of a
steady state and instability can arise even when the steady-
state flow curve is monotonic �27�.

B. Origins of the dynamical instability

As just discussed, the existence of decreasing portions of
the short-term flow curve, in contradiction with the steady-
state flow curve, is a source of instability. In the homoge-
neous version of the model �no z-dependence�, this causes
temporal instability in the form of van-der-Pol-type oscilla-
tions �27�. Essentially, the mechanism for such oscillations is
as follows: Starting, For instance, from a situation of high
stress as compared to the memory ���m�, the memory m
will start to grow as dictated by Eq. �6�; this growth of m in
turn brings a decrease in the value of � through Eq. �5�;
adapting to this, m then decreases, which increases �,
thereby recovering the initial high-stress situation and start-
ing the cycle anew.

When spatial dependence is added, this basic temporal
oscillation becomes compounded with shear banding. It is
easily seen how this can give complex spatiotemporal dy-
namics: looking at Fig. 3, if one imposes a mean stress ���
chosen within the unstable region, the system decomposes
into several shear bands with unequal local stress, as de-
picted on Fig. 1. Unlike the classical situation of Fig. 1, here
the van-der-Pol-type temporal oscillation rules out steady
states for the shear bands: a local unstable dynamics engages.
Simultaneously, the bands have to match, all together, the
constraint on ���. This creates long-range couplings between
the bands �when one oscillates, another has to compensate�,
considerably complicating the spatiotemporal behavior.

C. Linear stability analysis

We have performed a standard linear instability calcula-
tion on models �5� and �6�, with the following results:

�i� For an externally imposed value of the mean stress ���,
instability for stress evolution arises only if

R������ +
1

�S
	 0. �9�

�ii� when the above instability condition is obeyed, only
stress modes with wavevectors q in the range

0 � q �	−
R������ + 1/�S

�
�10�

are unstable. Also, modes with smaller wavevectors have a
larger growth rate: When the uniform q=0 mode is con-
strained, the lowest nonzero q-mode grows fastest.

The instability condition �i� is the same as for the purely
temporal version of the model �27�; it states that instability
can arise only in regions of decreasing R �or equivalently,
within the decreasing portions of the short-term flow curves
in Fig. 3�, and that it is facilitated as �S becomes larger or
impeded as it becomes shorter.

The second result �ii� is a natural consequence of stress
diffusion with diffusivity �; this kills off fluctuations with
too large q �small wavelengths� and prevents such modes
from becoming unstable.

D. Scaling property of the model

Let us assume that a stress response ��z , t� and shear rate
�̇�t� are obtained as the solutions of the model of Eqs. �5�
and �6�, under conditions of imposed mean stress ��� and
with a given set of parameters a=�M

−1 ,b ,c ,� ,�S ,�. Then,
choosing any scaling factor �, the scaled responses ���z , t�
and ��̇�t� would also be obtained as the solutions of the
model if one applied a mean stress ���� and used a scaled
set of parameters a=�M

−1 ,b /� ,c /�2 ,� ,�S ,�.
The proof of this scaling property is elementary and left to

the reader. It means that, although all numerical results given
below are found with one specific set of model parameters
��=40, a=1/�M=100, b=20, c=1.02, �=0.01, H=1�, they
in fact describe the behavior of a one-parameter manifold of
parameters governed by the scale transformation parameter
�.

Secondly, for our chosen parameter set, the observed
stresses in both oscillatory and chaotic regimes are very large
�of order 10 in dimensionless units, i.e., ten times the elastic
modulus of the fluid�. While such large amplitudes of the
elastic strain may be relevant for certain types of fluids, no
direct importance should be attached to this: One can scale
down numerical values of the stress to around, say, unity,
keeping exactly the same oscillatory or chaotic dynamics.
Note, however, that this will not change the ratio of stress
fluctuation to mean stress; this is always large for our param-
eter settings. �The parameter space is vast, and we have not
explored values for which this ratio might be reduced.�
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E. Experimental estimates for model parameters

Our model involves a set of phenomenological model pa-
rameters whose numerical values are a priori unknown. One
way around this difficulty is try to extract estimates for these
values using appropriate experiments: It is thus useful, at this
point, to sketch some of the possible strategies—keeping in
mind, however, that our minimal model is intended essen-
tially for a qualitative exploration of the physics at work in
complex fluids not for an effective fitting tool for specific
nonlinear materials.

�It is also recalled that numerical values used in the article
are nondimensional; see Appendix A for the procedure to
convert dimensional quantities, as obtained from experi-
ments, to nondimensional ones.�

A first experimental strategy is as follows: Starting from a
state of complete rest �where the structural memory has fully
relaxed, m=0�, and assuming that the structural time �S is
slow enough, one may be able to measure the instantaneous
flow curve at zero memory �Eq. �8�� using a moderately
rapid ramp up of the applied stress �e.g., sample the whole
curve within a few minutes�. Of course, the obtained curve
would be unstable �Fig. 3�, showing a conventional “discon-
tinuous shear-thickening” scenario with a shear-rate plateau
and classical �steady-state� shear bands; but the information
collected on the plateau �critical shear rate, lower and upper
values of the stress at the jump, ¼� would probably be suf-
ficient to estimate the short-term parameters a, b, c, and
thereby determine the function R��� in the model.

Following this determination of R, the value of the cou-
pling parameter � could then be found through a simple
steady-state experiment where a constant stress �ss is im-
posed for a long period a time �in a stable region of the phase
diagram�: As stated by Eq. �7�, the shear rate then corre-
sponds to the �known� instantaneous contribution R��ss� plus
the delayed contribution ��ss. Thus, a measure of the shear
rate will determine the value of �, the only unknown in the
equation.

Next, estimating the value of the structural relaxation time
�S could be done through a relaxation experiment: From a
situation of steady state under a given applied stress, the
value of the stress is suddenly changed to a new constant
value �or even cancelled�; if �S is long compared to other
times in the system, it should be controlling the global relax-
ation of the response to the new steady state. Another possi-
bility which could be explored could be to look at the linear
viscosity after a period of strong shear and/or after a tem-
perature jump �31�.

The last parameter that needs to be determined is the
stress diffusivity �, which in classical, steady-state shear
banding is related to the width of the interfaces between
bands. We expect � to be extremely small �50� �and in any
case, much below the artificially large value of 10−2 used
throughout this work for computing reasons�, although we
are not aware of any experiments allowing to measure it.
This should not be too much of an issue, as our results show
that �below a certain threshold� the behaviour of the model
does not qualitatively depend on the actual value of �.

IV. NUMERICAL METHODS

In this section, we detail the numerics techniques used to
obtain the results presented in the rest of the article.

A. Spectral scheme; boundary conditions

Our numerical scheme expands the stress in Fourier
modes, then is solving for the evolution of these—rather than
directly solving the model equation on a grid of points in
direct space �32,33�. Such a spectral scheme �51� had two
main advantages, as follows: �a� In Fourier space, working
under conditions of fixed mean stress simply corresponds to
fixing the value of the uniform, zeroth mode in the Fourier
expansion of the stress �this is much more difficult to imple-
ment in direct-space schemes�; �b� Not only can arbitrarily
accurate numerical results be obtained by keeping enough
Fourier modes in the scheme �“high-order truncation”�, but
also, by keeping only a minimal number of modes �“low-
order truncation”�, one can obtain a reduced description
whose analysis is much simplified. Such a truncation is more
likely to capture the physics of the problem than a reduced
real-space scheme with a spatial grid of only a few points.
We shall present both high-order and low-order numerics in
what follows.

We must also choose appropriate boundary conditions on
the system. We demand zero stress flux at both ends of the
Couette cell:


 � �
z=0 = 
 � �
z=H = 0 . �11�

To motivate this, note that stress flux arises through the dif-
fusion term in Eq. �5�, which is generally ascribed to mate-
rial displacement of stress-carrying elements �52�. Our
boundary conditions then reflect the fact that no fluid ele-
ment leaves through the top nor bottom of the cell.

Now recall that, for reasons related to the physics of vor-
ticity shear banding �Fig. 1�, we have the constraint:

��� =
1

H
�

0

H

��z,t�dz = const. �12�

We now decompose the stress field onto a Fourier basis of
spatial modes compatible with the above boundary condi-
tions �cosines only�:

��z,t� = �
k=0

N−1

�k�t�cos�kz/H� �13�

and note that �0�t�= ��� �given that H=1 in our units�. Simi-
larly for the memory term:

m�z,t� = �
k=0

N−1

mk�t�cos�kz/H� . �14�

The series in Eqs. �13� and �14� only contain the first N
modes �k�t� and mk�t� of an infinite Fourier series: The level
N of this truncation �known as a Galerkin truncation �51��
determine the overall accuracy of the scheme. �For a given
accuracy, the number of modes that must be kept is often
much lower than the number of grid points in any real-space
discretization �51�.�

We now project Eqs. �13� and �14� onto the Fourier basis
to obtain a set of evolution equation for each of the mode
amplitudes �k�t� and mk�t�. Thanks to the simple functional
form of the model, it is possible to obtain analytical expres-
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sions for the mode equations, which are given in full in Ap-
pendix B. These mode equations are of the form �1�k�N
−1�

�̇k = �coupling terms� − �mk − �qk
2�k �15�

ṁk = −
mk − �k

�S
�16�

where qk=k /H is the wavevector, and the coupling terms,
stemming from the nonlinearity of the instantaneous term
R���, link the evolution of each �k mode to all others. As
expected, stress diffusivity damps higher modes via a linear
�q2 term.

Finally, the equations for the k=0 uniform modes �0�t�
= ��� and m0�t� are

�̇0 = 0 = �̇�t� −
1

H
�

0

H

R†��z,t�‡dz − �m0�t� �17�

ṁ0 = −
��� − m0�t�

�S.
�18�

Integrating Eq. �18� gives �with m�t=0�=0, see below�

m0�t� = ����1 − e−t/�S� . �19�

Plugging this expression into Eq. �17�, we obtain an impor-
tant expression which provides us with the instantaneous
value of the shear rate �̇, once the value for the stress has
been calculated from the Fourier modes:

�̇�t� =
1

H
�

0

H

R���z,t��dz + �����1 − e−t/�S� . �20�

The spatial integral in this expression can in fact be carried
out analytically, not numerically �see Appendix B�.

The final outcome of the Fourier-Galerkin truncation
scheme is that the partial differential equations �5� and �6� in
the original formulation of the model have become a dy-
namical system of finite order, containing 2N ordinary dif-
ferential equations for the modes �k�t� and mk�t� as specified
by Eqs. �15� and �16�, plus the above equations for the uni-
form modes. The numerical integration of the ordinary dif-
ferential equations �15� and �16� was performed with the
help of a commercial solver package �53�, using an adaptive
time step. Given the separation of scales between the typical
times �M and �S, the adaptive step was needed, to maintain
acceptable computing times.

Initial conditions at t=0 were chosen as follows: Memory
was set to zero �i.e., mk�0�=0 for all k�, and initial values for
each stress mode �k�0� were picked at random between 0
and 10−4. The noise amplitude was found not to be essential
to the qualitative results obtained.

B. High-order and low-order truncation

The behavior of our fluid model was explored using two
types of Fourier-Galerkin schemes: One where the number of
modes kept in Eqs. �13� and �14� is high �N=40�, and one
where it is minimal �N=3�.

For the high-order truncation �Sec. V�, we found that
keeping N=40 modes was numerically accurate, with rea-
sonable computing times. One criterion in this choice was
that numerics should be able to fully resolve interfaces be-
tween shear bands �the sharpness of interfaces is essentially
controlled by the stress diffusivity �; we set it to 10−2 unless
otherwise stated�. A second criterion is that N should be high
enough that results become N-independent: This was indeed
the case, with truncations from N=25 up all giving similar
outputs. This applies at the level of phase diagrams, etc., but
not to individual trajectories which �at least in chaotic re-
gions of the phase diagram� can depend on every detail of
the numerics.

We also checked the validity of our high-resolution re-
sults, for a given set of parameters, against variations in ei-
ther initial conditions for the stress modes, or in the actual
sequence of time steps followed by the adaptative iterator
during numerical integration. We found a limited dependence
on these factors from one run to another. To take this into
account, the “phase diagram” of Fig. 4, where the general
behavior of the model is summarized, was established on the
basis of several independent runs for each point marked in
the figure. Thus the general features of the phase diagram, as
well as all conclusions drawn on the model’s global behav-
ior, are reliable.

In the low-order truncation �Sec. VI�, on the other hand,
our aim was to study the behavior of the model in its sim-
plest possible spectral representation. In particular, we are
interested in whether low-dimensional chaos was present and
what route led to it. Since three degrees of freedom are re-
quired to allow for chaos, the lowest compatible truncation
in our model corresponds to N=3: Excluding uniform modes
�0= ��� and m0, which are dynamically inactive, this leaves a
four-dimensional system involving �1, �2, m1, and m2. In the
following sections, we present the results of the model, first
in the high-order truncation, then in the low-order.

FIG. 4. Phase diagram of the model when �S and ��� are varied:
��� chaotic ��� periodic point. Three main regimes are observed:
�O� oscillating shear bands, �T� traveling shear bands, �C� chaotic
regions. The outer dashed line is the linear stability limit, R������
+1/�S=0 �Eq. �9��. Numerical parameters as in Fig. 3.
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V. HIGH-ORDER RESULTS

In this section, we present the results that were obtained
by solving the model of Eqs. �15� and �16� in the high-
resolution truncation �N=40�.

A. Phase diagram

To get a global picture of the model’s behavior, we made
a systematic exploration of its spatio-temporal dynamics by
varying the two physically most important parameters: The
ratio between the structural timescale and the mechanical
timescale �S /�M, and the spatially averaged stress ��� �fixed
by the mechanical torque on the Couette�. On varying �S /�M,
we choose to keep �M fixed ��M=1/a=0.01� and vary �S

only. All other parameters are held at their values of Fig. 3,
i.e., b=20, c=1.02, �=40, �=0.01, H=1.

Despite the high-dimensional dynamical system under
consideration �2N=80�, the obtained “phase diagram” for the
model �shown in Fig. 4� displays a simple overall structure
where three main dynamical regimes emerge: Periodic re-
sponse with �more or less complex� oscillating shear bands at
extremely long �S; periodic response with traveling bands for
long �S; and finally, chaotic response at shorter �S and off-
centered values of ���. The dotted lines separating regions on
the phase diagram are guides to the eye, representing cross-
overs not sharp transitions between different types of behav-
ior. The “C-regions” marked in the plot were defined so as to
enclose all observed chaotic points; these regions do, how-
ever, contain internal structure with periodic and chaotic
pockets, whose exact boundaries can depend on initial con-
ditions and other details.

We next discuss in some detail the three main regimes
encountered on the phase diagram, emphasizing an intuitive
understanding of the physics involved. However, as shall be
seen, there is significant variety in behavior even within the
same regime.

1. Periodically oscillating shear bands

We first discuss the regime encountered when structural
evolvution is much slower than stress relaxation �typically
�S /�M
103� marked “O” in Fig. 4. Here periodic oscilla-
tions of the shear rate and stress are observed, while spa-
tially, the flow presents oscillating shear bands. Depending
on the imposed stress ���, the waveforms of these band os-
cillations �which induce oscillations in both the local stress
��z , t� and the mean strain rate �̇�t�� range from simple to
very complex. Moving along any horizontal line within the
region O �changing ��� at constant �S /�M�, one observes the
same succession of behaviors; we present these for one typi-
cal line, �S /�M=104.

a. “Flip-flopping” shear bands. Near the middle of this
line, e.g., ���=7.0, we find two “flip-flopping” bands �see
Fig. 5�a��: At any time, the cell is equally divided between a
high-stress and a low-stress band, but the identity of the
bands reverses periodically. This results in the “checker-
board” spatiotemporal pattern shown in Fig. 5�a�. Accord-
ingly, the stress ��z , t�, measured for a given height within

the cell �e.g., z=2/3�, displays periodic oscillations with a
waveform close to a square wave �and abrupt changes be-
tween the low- and high-stress states, as expected for “relax-
ation oscillations” �54��. The flip-flop period �flip is of order
the structural time �S. The shear rate �̇�t� also presents a
periodic evolution, albeit with a more complicated wave-
form. �This extra complexity is generic in our shear rate time
series, but seems to be a model-dependent feature rather than
connected to any deep physics.�

The mechanism underlying the dynamics of flip-flopping
bands is as outlined in Sec. III B: Because of the short-term
instability present in the fluid �Fig. 3�, shear-bands form.
Each of these bands is locally submitted to a van-der-Pol-
type instability which forces them to oscillate between states
of high and low stress. But these local oscillations cannot
occur independently: Because the spatial mean of the stress
��� must be conserved, they have to be synchronous—when
one band goes up, the other must flip down. Note that shear

FIG. 5. Typical periodic responses in the oscillating shear band
regime, chosen along the line �S /�M=104 in the phase diagram. �a�
Flip-flopping bands at ���=7; �b� Zig-zagging interface at ���
=7.1; �c� Complex periodic motion at ���=9. Each group presents
time series of the stress � at z=2/3, the shear rate �̇, and a space-
time plot of ��z , t� with t vertical, z horizontal �clear shades corre-
spond to high stress, dark shades to low stress�. Parameters as in
Fig. 3.
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bands not only display different values of the stress, but, in
general also of the memory m�z , t�, albeit much less mark-
edly: In our model, this means that both the mechanical and
structural states differ between bands.

Finally, a physically important question in this regime is:
What happens to the interface between bands during flip-
flops? Looking at Fig. 5�a�, we see that the interface position
seems stationary. A fixed position for the interface would
imply that, in the short interval when bands are flipping, the
interface profile has to reverse its slope. Interestingly, closer
scrutiny shows that this is not what happens: Instead of re-
versing the slope of a static interface, the system prefers to
replace the “wrong” interface by a new one with the correct
slope. As seen in Fig. 6, this occurs by a rapid sweeping
motion where the old interface quickly travels to one end of

the cell and disappears; simultaneously, the new interface is
generated at the other end and moves to the middle of the
cell, where it will rest until the next flip occurs. Thus, long
periods of immobility for the interface alternate with rapid
sweeping motions �the latter being too quick to be observ-
able on the scale of the plot in Fig. 5�a��.

Qualitatively, everything happens as though when flips
occurs in the bands, they trigger a traveling wave removing
the old interface and bringing the new one in. Thus, this
regime of flip-flopping bands must be seen as one of inter-
mittent traveling waves, separated by long periods of latency
�of order �S /2�. In accord with this view, when the latency
interval diminishes sufficiently �i.e., �S is decreased�, the in-
termittent waves should become continuous: This is indeed
exactly what happens in the “T”-region of the phase diagram
�discussed in Sec. V A 2�.

b. Oscillating bands with zig-zagging interface. Pursuing
our exploration of the model’s behavior along the horizontal
line �S /�M=104, we now move slightly off-center to the right
or the left; for example, ���=7.1. The interface between
bands now adopts a periodic, zig-zagging motion which su-
perposes to the synchronous oscillations of the shear bands
�see space-time plot in Fig. 5�b��. Accordingly, the time se-
ries of the stress becomes more complex �square waves are
distorted�, and the period becomes a multiple �here three� of
�flip. A similar increase in complexity is seen in the shear
rate.

The zigzag motion arises because the off-centered value
of ��� now enforces unbalanced proportions of the low- and
high-shear bands in the Couette cell. Because this value for
��� is fixed, these proportions are also fixed: Thus each time
shear bands oscillate and reverse identities, the interface be-
tween them must move to and fro to maintain the required
proportions.

c. Complex periodic oscillations. If we now move further
towards the wings of the phase diagram, the coupling be-
tween the global constraint on ��� �unequal bands� and the
intrinsic flipping dynamics of the bands generates an ex-
tremely complex behavior in the fluid, which, remarkably,
manages nonetheless to remain periodic. Figure 5�c� shows
the response obtained at ���=9.0: The time series for the
stress ��2/3 , t�, though still related to the simple oscillations
seen at ���=7.0, has become very ragged, and the period is
now a large multiple of �flip �about six times�.

We conclude this presentation of regime O by noting that,
in experiments, oscillating shear bands similar to our theo-
retical results have indeed been observed in shear-thickening
fluids �11–14�.

2. Traveling shear bands

We now describe the second regime in the phase diagram
of our model, encountered when �S is long as compared to
�M, but not exceedingly so �10��S /�M�103; region “T” in
Fig. 4�. This regime is characterised by a periodic nucleation
of shear bands which subsequently cross the system at
roughly constant velocity. The typical situation is shown in
Fig. 7: Nucleation occurs at a boundary, and bands travel

FIG. 6. �Color online� Plots of ��z , t� and m�z , t� vs z for suc-

cessive times, showing how the “old” interface is replaced with a
“new” one in the regime of flip-flopping bands. In �a� and �b� one
sees the latency period with stationary interface—note, however,
that m slightly evolves from �a� to �b�, thus preparing the forthcom-
ing flip; �c� As the flip occurs, traveling wave replacing the previous
interface by a new one; �d� and �e� new latency period—note again
the slow evolution in m.
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across the entire system, one at a time. As before, the period
of the various time series is comparable to the structural
timescale �S. Similar band motion was reported in Ref. �32�,
but there the bands “ricochet” off the walls of the container.

Figure 8 shows examples of other traveling behaviors in
this regime: The first space-time plot �a� presents a case
where nucleation occur at a nonboundary point, yielding two
outgoing waves in a one-dimensional analogue of the classi-
cal “target patterns” seen in chemical oscillators �55�. Space-
time plot �b� presents another case of interior nucleation, but
where bands alternatively travel to one edge or the other.
�Details here strongly depend on the initial conditions.� Fi-
nally, space-time plot �c� illustrates how the model behavior
crosses over smoothly from oscillating bands in regime O to
traveling bands in regime T: The behavior is intermediate
between the situations depicted in Fig. 5�a� and Fig. 7, with
bands somehow oscillating as they travel.

Note that the waves observed in regime T are kinematic
waves, arising from a staggered phase distribution in the lo-
cal van-der-Pol band oscillations. They are not associated
with transport of material or stress; hence the waves can
travel through the system boundaries, despite the imposed
boundary conditions ���=0�. Accordingly the wave velocity
is independent of the stress diffusion constant � �data not
shown�.

Finally, we studied how the bands velocity varied as �S
was changed. At least for the situation in Fig. 7, where there
is only one band at a time in the cell, a naive argument for
the velocity is as follows. Since traveling bands correspond
to �staggered� local oscillations, two successive passages of
bands at a given point of the system correspond to the
completion of a local oscillation cycle for this point. Noting
that the condition of a constant ��� imposes that bands dis-
appearing at one end must reappear immediately at the other,
we conclude that each band must cross the system in one
local oscillation period. Since this is of order �S, and recall-
ing that H=1, we deduce vband�1/�S for the band velocity.
Our data show that vband indeed decreases with �S, and con-
firm a roughly linear trend with �S

−1 �see Fig. 9�.

3. Spatiotemporal rheochaos

The third main regime encountered in the phase diagram
arises in two disconnected pockets �regions “C” in Fig. 4� at
moderately long values of �S relative to �M and for strongly

off-centered values of the imposed stress ���. An increased
complexity of oscillations within regime O on approaching
the wings of the phase diagram was already noted previ-
ously; in regions C, it finally leads to chaotic behavior.

The spatiotemporal patterns produced in this regime are
extremely varied and often appear like complex versions of
periodic patterns that arise in other parts of the phase dia-
gram. Examples of rheochaos are given in Fig. 10: In Fig.
10�a�, we have a regime of chaotic bands with “random de-
fects” between bands �this is similar to rheochaotic patterns
observed in shear-thinning micelles in Ref. �32��; in Fig.
10�b�, we see a situation which resembles the traveling bands
of regime T, but here disordered and following a somewhat
wiggling motion; Fig. 10�c� presents the case of flip-flopping
bands where irregularities appear within the bands them-
selves; plot �d� shows traveling bands whose nucleation
point changes “at random;” in Figs. 10�e� and 10�f�, we ob-
serve a “bubbly” phase of localized, short-lived shear bands
that appear and disappear erratically in the cell �although

FIG. 7. Periodic time series and space-time plot of the stress
��z , t� in the traveling band regime. Parameters: �S /�M=90, ���
=7, others as in Fig. 3.

FIG. 8. Space-time plots of the stress ��z , t� showing other
examples of traveling bands. �a� “Target pattern” analogue seen at
�S /�M=30 and ���=8.5; �b� Alternating bands seen at �S /�M=400
and ���=5; �c� Transition between oscillating band and traveling
band regime seen at �S /�M=1000 and ���=7. Other parameters as
previously.
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occasionally, a band survives and shoots across the system�.
Chaos, for each point so marked in Fig. 4, was confirmed

by computing the largest Lyapunov exponent, �L. In Fig. 11,
we give a plot of �L when ��� is varied on the horizontal line
�S /�M=20 of the phase diagram.

Returning to the data of Fig. 10, these patterns vary in
how highly developed is the chaos: for instance, Fig. 10�b�
seems much more erratic than Fig. 10�c�. This is reflected on
the Lyapunov exponents: We find �L�1.2 and �L�0.2, re-
spectively. However, we were unable to demonstrate true
low-dimensional chaos within our high-order truncation re-
sults. Nor could we numerically explore any route to chaos,
as the transition window proved unattainably small in the
phase diagram. We do however discuss below the route to
chaos within the low-order truncation of the model.

A last comment regards the role played by the value of �,
the stress diffusivity, in chaotic regimes. Numerical solutions
in this article were computed with a default value of �
=10−2, but data obtained with different values suggest that
smaller values of the stress diffusivity favor chaos. This
makes sense, as � is a damping term for higher Fourier
modes �see Eq. �15��: When � is smaller, more modes are
involved in the dynamics, and thus the system is effectively
higher-dimensional. Realistic values for � might be much
smaller than our choice, which was dictated by the need to
find N-independent behavior at relatively modest N
25. Ac-
cordingly a more realistic phase diagram at lower � might
display much larger chaotic pockets than Fig. 4.

VI. LOW-ORDER RESULTS

The results presented so far all used a high-order trunca-
tion, with a view to obtaining a numerically reliable and
precise representation of the continuum model of Eqs. �5�
and �6�. In this section, we instead study the behavior in the
simplest nontrivial mode decomposition of Eqs. �5� and �6�,
with N=3. The corresponding low-dimensional results pro-
vide only a caricature of the full dynamics; but they bring

interesting insights. This approach is similar in spirit to the
classical simplification of the Rayleigh-Bénard equations
�describing thermal convection� into the Lorentz equations
�56�.

By restricting the number of dynamical variables, it per-
mits an analytical or semi-analytical study of some of the
model’s features. It also clarifies which features of the model
survive in low dimension and thus are in some sense robust;
we shall see that rheochaos survives the truncation, and is
not therefore solely the result of high-order couplings in the
full dynamics.

Finally, there are interesting physical consequences to
demonstrating the presence of chaos in a low-dimensional
Fourier decomposition. The results we have presented so far,
along with other works �27,32,33�, might be taken to suggest
a generic interpretation of rheochaos in complex fluids as
resulting from the erratic motion of discrete interfaces be-
tween shear bands. This idea is appealing because, in turn, it
suggests that rheochaos may be more efficiently modeled by
focusing on interfacial dynamics and writing an equation of
motion directly for the interface �27,57� �rather than for the
whole fluid as we are doing here�. The presence of rheochaos
in our low-order truncation �which allows only smooth spa-
tial variations of � and m� shows that sharply defined bands
are not an automatic prerequisite for rheochaos.

As already explained in Sec. IV, the lowest possible mode
decomposition allowing chaos is obtained for N=3. Since
the uniform Fourier modes, �0= ��� and m0, are dynamically
inactive, this reduced representation of the model is effec-
tively four-dimensional, with �1�t�, �2�t�, m1�t�, and m2�t� as
the degrees of freedom. Drawing from the general analytical
expression given in Appendix B, the dynamical equations for
the four retained modes have the relatively simple form
�recall ��� is a constant�:

�̇1 = − a + 2b��� − 3c���2 − ��

H
�2��1 −

3

4
c�1

3

+ �b − 3c�����1�2 −
3

2
c�1�2

2 − �m1

�̇2 = − a + 2b��� − 3c���2 − ��2

H
�2��2 −

3

4
c�2

3

+
1

2
�b − 3c�����1

2 −
3

2
c�1

2�2 − �m2

ṁ1 = ��1 − m1�/�S

ṁ2 = ��2 − m2�/�S.

As with the high-order truncation, we have explored nu-
merically the phase diagram for this minimal model. We in-
deed find chaos, confirming that rheochaos is a robust feature
of the underlying physics. As Fig. 12 shows, the global struc-
ture of the phase diagram is also robust and presents the
same features as in the high truncation: chaotic behavior ap-
pears on both wings of the diagram �off-centered values of
���� and for �S /�M ratios not too large �structural relaxation

FIG. 9. Velocity of traveling bands vs �S
−1, measured in situa-

tions where a single band is present in the system: ��� ���=8.0;
��� ���=7.0; ��� ���=6.0. The plot shows that vband is roughly
proportional to �S

−1. Error bars are ±0.15. Parameters as in previous
figures.
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not too slow�, while periodic states are observed elsewhere.
One observation is that chaotic pockets are now much
smaller than in the high-order truncation phase diagram: This
is natural as chaos is usually facilitated in higher dimensions.

We do not classify periodic points in this low-order model
as “oscillating bands” or “traveling bands:” The stress varia-
tions are anyway too smooth to allow the definition of proper
shear bands. However, as illustrated in Fig. 13, there remain

low-dimensional analogues of the oscillating and traveling
bands, in roughly the same locations as in the high-order
truncation.

In Fig. 14, we show a typical trajectory in the chaotic
regime of the low-order model: This appears less erratic than
in the high-order counterpart �Fig. 10�, essentially amounting
to a slightly irregular oscillation of two “bands.” The largest
Lyapunov exponent is �L�0.4. Finally, we studied the route

FIG. 10. Various types of spatiotemporal rheochaos observed in the model �high-order truncation�. Numerical parameters as in Fig. 3.
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to chaos in the low-order truncation, and found a classical
period-doubling scenario �Fig. 15�. This result does not,
however, imply anything about the route to chaos in the
high-dimensional version of the model.

The results of this section show, not only that sharp inter-
faces are not necessary for rheochaos, but also that the low-
dimensional representation of our shear-thickening model
can reproduce most of the important physical features ob-
served in higher dimensions. This low-order truncation could
also enable a deeper understanding of the oscillating and
traveling band regimes: We have not explored in detail the
relation between �flip, �S, and the band velocity. It might also
permit a deeper understanding of the effect of the global
stress constraint, particularly the mechanism whereby this
affect the dynamics and makes it more or less complex.

VII. CONCLUSIONS

We have introduced a shear thickening fluid model, allow-
ing for spatial inhomogeneity, in which the relaxation of
stress couples to a memory term linked to slow structural
changes in the fluid. The interplay between the rheological
and the structural dynamics leads to complicated spatio-
temporal dynamics. The model maps onto the FitzHugh-
Nagumo model for neural networks, but with a different type
of global constraint �imposition of the average stress ����,
specific to complex fluids.

In steady state for both the structure and stress, the flow
curve is monotonically increasing. However, short-term flow
curves, valid on timescales too short for the structure to re-

FIG. 11. Plot of the largest Lyapunov exponent �L computed as
a function of the imposed stress ��� on the line �S /�M=20 �high-
order truncation�. Chaotic behavior �positive values� appears only
on the wings of the diagram. Imprecision on the exponent values is
typically ±0.1. Numerical parameters as in Fig. 3.

FIG. 12. Phase diagram in the low-dimensional truncation of the
model: ��� Periodic points; ��� Chaotic points. Note that, for pic-
tural clarity, a horizontal spacing between points ����=0.25 was
chosen for the plot, but our actual numerical exploration of the
phase diagram was performed on a much finer grid with ����
=10−2. The outer dashed line delineates the limit of linear stability
�Eq. �9��. Dotted lines around chaotic pockets are merely guides to
the eye. Numerical parameters as in Fig. 3.

FIG. 13. Low-dimensional analogues to the oscillating band re-
gime �a� and to the traveling band regime �b�. Note the ill-defined
“interface” between “bands.” Parameters: �a� �S /�M=104, ���=7;
�b� �S /�M=40, ���=7; other parameters as in Fig. 3.

FIG. 14. Rheochaos in the low-dimensional representation of
the model, here plotted for �S /�M=60 and ���=3.55. Numerical
parameters as in Fig. 3.
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lax, are nonmonotonic and unstable. This obliges the appear-
ance of unsteady shear bands.

The phase diagram of the model on varying ��� and the
ratio of structural and stress relaxation times, �S /�M�
4� has
a simple overall structure. Three main regimes were found.
For very large �S /�M, we found oscillating shear bands; else-
where we found periodic traveling shear bands at mid-range
values of ���, with regions of spatio-temporal rheochaos for
off-center values.

In the oscillating band regime, shear bands must oscillate
synchronously while respecting the imposed value for the
mean stress ���. When the volume fractions of the two bands
within the cell are unequal �off-center ���� oscillations be-
come increasingly complex but remain periodic. In the other
periodic regime seen in the model, bands nucleate at a border
point of the container, or more rarely at an interior point, and
travel across it at a near-constant velocity which scales
roughly as �S

−1.
Our model exhibits spatio-temporal chaos. The corre-

sponding space-time patterns are varied, but fall into a com-

mon picture �coherent with that of other groups �32,33��:
Rheochaos manifests as a flow that restlessly attempts to
form steady shear bands, but fails due to internal structural
constraints.

It is known that the constraint on ��� �set by the mechani-
cal torque on a Couette� is essential for shear-thickening flu-
ids as it sets the respective fractions of the high- and low-
shear bands in the flow �6�; and that finite stress diffusivity �
provides a selection criterion among possible banded flows
�4�. Within our model, the importance of these quantities
extends to time-dependent cases: Dynamical complexity in-
creases as ��� moves off-center, whereas a smaller diffusiv-
ity � promotes chaos.

Taking advantage of our Fourier-space representation, we
also studied a four-dimensional truncation for which we
showed that the important physical features found in high
dimension persist, including the general structure of the
phase diagram.

The presence of chaos in the low-order model shows that
sharp interfaces between bands are not necessary for
rheochaos. This does not mean that such interfaces have no
effect, only that the chaos would persist without them.

In conclusion then, our work, along with others’ �32,33�,
supports a “frustrated shear-banding” picture of rheochaos,
in which flow inhomogeneity �whether sharp interfaces or
smooth variations� plays a crucial role. A gap between theory
and experiment still remains: Our model makes no direct
connection with the microscopics of the considered fluids.
Improved experimental information about the dimensionality
of the observed chaos, or the route into, for shear-thickening
systems would be most helpful. One general prediction of
our model that may be easily tested experimentally is that the
dynamics should get more complex as the imposed stress ���
is chosen closer to the edges of the fluid’s unstable window.

One potentially important factor that has been neglected
in the present model is the role played by normal stresses in
the fluid. In many of the experimental fluids we are con-
cerned with, their magnitude is significant in high-shear re-
gimes. One could also consider alternative scenarios for
rheochaos, where stress variations do not couple to noncon-
served structural changes as proposed here �these include
modulation of concentration at finite wavevector, i.e., mi-
crophase separation� but instead to conserved modes such as
global concentration fields.
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APPENDIX A: NON-DIMENSIONALISATION

We here describe how the nondimensional equations �1�
and �2� for the model are obtained from the original physical
equations. This is especially useful if one wants to deduce
the numerical value of a nondimensional parameter used in
the model from an experimental value. Throughout this
Appendix, we use the convention that normal letters are for

FIG. 15. Route to chaos in the low-dimensional truncation,
shown for �S /�M=60. Plotted are three-dimensional projection on
the ��1 ,�2 ,m1�-space of the four-dimensional attractors. From �a�
to �d�, first steps of the period-doubling cascade: �a� ���=3.53, �b�
���=3.535, �c� ���=3.5375, �d� ���=3.5379; �e� Chaotic attractor
obtained for ���=3.55, corresponding to the situation shown in Fig.
14. Numerical parameters as in Fig. 3.
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dimensional, physical quantities, and starred letters for non-
dimensional ones. In the rest of the article, all quantities are
nondimensional by default, so that stars have systematically
been omitted.

The dimensional version of Eq. �1� writes

�̇ = G�̇ − �M
−1� + b�2 − c�3 − �� �S

−1e�t−t��/�S��t��dt� + ��z
2�

�A1�

where G is the transient elastic modulus, and other quantities
have been defined in the main text.

We use G, �0 �defined below� and H �the Couette axial
extent� as, respectively, the units for stress, time, and space,
and define the corresponding reduced quantities: �*=� /G,
t*= t /�0, and z*=z /H.

Substituting these quantities in Eq. �A1�, we obtain the
nondimensional expression

�̇* = �̇ −
�0

�M
�* + bG�0�*2 − cG2�0�*3

− ��0
2� �S

−1e�0�t*−t�*�/�S�*�t�*�dt�* + �
�0

H2�z*
2

�*

�A2�

We now have to choose a value for the unit time �0: For
practicality, because we always work on timescales longer
than �M, we choose �0=100�M. We next define the reduced
Maxwell time �M

* =�M/�0 and the constant a*, its inverse: we
have �M

* =0.01 and a*=�M
*−1=100.

Finally, we transform the remaining physical parameters
of the model into reduced quantities: b*=bG�0, c*=cG2�0,
�*=��0, �S

* =�S /�0, �*=��0 /H2. In terms of these reduced
quantities, Eq. �A2� rewrites

�̇* = �̇ − a*�* + b*�*2 − c*�*3

− �*� �S
*−1e�t*−t�*�/�S

*
�*�t�*�dt�* + �*�z*

2
�*

which is exactly the expression given in Eqs. �1� and �2� of
the main text �dropping stars out�.

APPENDIX B: FULL ANALYTICAL EXPRESSION FOR
MODE EQUATIONS

In this Appendix, we give the full analytical expression of
the evolution equations for the stress modes �n�t�, of which
only a shortened version was given in Eq. �15�. �For memory
modes, the analytical expression is straightforward and was
given in Eq. �16�.�

The equation for a given mode �n is found by projecting
the partial differential equation �5� onto the associated Fou-
rier mode, i.e., by multiplying both sides by cos�nz /H� and
integrating over z. Because the nonlinearities in R��� are
only polynomial, the integrals are analytically tractable.
�Note that this is a rare fact in spectral or pseudo-spectral
schemes; when nonlinearities are more complex, in general,
exact expressions for mode equations do not exist, and the
numerical scheme accordingly increases in complexity �50�.�
The only difficulty in the present case comes from the fact
that we deal with truncated Fourier series �this explains some
rather baroque expressions for summation limits in the fol-
lowing�.

Considering a truncation of order N �i.e., the highest
mode is �N−1�, the governing equation for the evolution of
mode �n�t� writes �for all n such that 0�n�N−1�:

�̇n = �n
0�̇ − a�n +

b

2 �
p=0

n

�p�n−p + �2 − �n
0�

b

2 �
p=0

N−1−n

�p�p+n

−
c

4 �
p=0

n

�
q=0

n−p

�p�q�n−p−q −
c

4 �
p=0

N−1

�
q=q1

q2

�p�q�n+p−q

− �3 − 2�n
0�

c

4 �
p=0

N−1−n

�
q=0

N−1−n−p

�p�q�n+p+q − �2 − �n
0�

�
c

4 �
p=0

N−1

�
q=q3

q4

�p�q�n+q−p − �mn − ��n

H
�2

�n

where � is the usual Kronecker symbol, and the following
shorthands were used

q1 = max�n + p − N + 1,0�

q2 = N − 1 + min�n + p − N + 1,0�

q3 = max�0,p − n�

q4 = N − 1 + min�0,p − n� .

In high-order truncations �N=40�, a typical mode equa-
tion contains several hundreds terms. Note also that the
zeroth-mode equation �n=0� is the only one where the shear
rate �̇ appears; since, in addition, we have �̇0= d

dt ���=0 un-
der conditions of fixed torque, this equation can be used to
compute �̇�t� from the individual stress modes �n�t�. This is
in fact the same equation as Eq. �20�, but here the integral
has been calculated explicitly.
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